Transport \& Multilevel Approaches for Large-Scale PDE-Constrained Bayesian Inference

Robert Scheichl

IWR
Interdisciplinary Center for Scientific Computing

Collaborators:
K Anaya-Izquierdo \& S Dolgov (Bath); C Fox (Otago); T Dodwell (Exeter); AL Teckentrup (Edinburgh); T Cui (Monash); G Detommaso (Amazon)

"Computational Statistics and Data-Driven Models" ICERM, Brown University, March 23, 2020

Inverse Problems

Inverse Problems

$y \in \mathbb{R}^{N_{y}}$
Data y are limited in number, noisy, and indirect.
$x \in X$
Parameter x often a function (discretisation needed).
$F: X \rightarrow \mathbb{R}^{N_{y}}$
Continuous, bounded, and sufficiently smooth.

Bayesian interpretation

The (physical) model gives $\pi(y \mid x)$, the conditional probability of observing y given x. However, to predict, control, optimise or quantify uncertainty, the interest is often really in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y - the inverse problem:

Bayesian interpretation

The (physical) model gives $\pi(y \mid x)$, the conditional probability of observing y given x. However, to predict, control, optimise or quantify uncertainty, the interest is often really in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y - the inverse problem:

$$
\pi_{\mathrm{pos}}(x):=\underbrace{\pi(x \mid y) \propto \pi(y \mid x) \pi_{\mathrm{pr}}(x)}_{\text {Bayes' rule }}
$$

Bayesian interpretation

The (physical) model gives $\pi(y \mid x)$, the conditional probability of observing y given x. However, to predict, control, optimise or quantify uncertainty, the interest is often really in $\pi(x \mid y)$, the conditional probability of possible causes x given the observed data y - the inverse problem:

$$
\pi_{\mathrm{pos}}(x):=\underbrace{\pi(x \mid y) \propto \pi(y \mid x) \pi_{\mathrm{pr}}(x)}_{\text {Bayes' rule }}
$$

Extract information from $\pi_{\text {pos }}$ (means, covariances, event probabilities, predictions) by evaluating posterior expectations:

$$
\mathbb{E}_{\pi_{\mathrm{pos}}}[h(x)]=\int h(x) \pi_{\mathrm{pos}}(x) d x
$$

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 "}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 "}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

- classical least squares solution \hat{x} is maximum likelihood estimate
- prior distribution π_{pr} "acts" as regulariser - well-posedness !
- regularised least squares sol. is maximum a posteriori (MAP) estimate

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 \text { " }}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

- classical least squares solution \hat{x} is maximum likelihood estimate
- prior distribution π_{pr} "acts" as regulariser - well-posedness !
- regularised least squares sol. is maximum a posteriori (MAP) estimate However, in the Bayesian setting, the full posterior $\pi_{\text {pos }}$ contains more information than the MAP estimator alone, e.g. the posterior covariance matrix reveals components of x that are (relatively) more or less certain.

Bayes' Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map " $F^{-1 \text { " }}(y \rightarrow x)$ is typically ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

- classical least squares solution \hat{x} is maximum likelihood estimate
- prior distribution π_{pr} "acts" as regulariser - well-posedness !
- regularised least squares sol. is maximum a posteriori (MAP) estimate

However, in the Bayesian setting, the full posterior $\pi_{\text {pos }}$ contains more information than the MAP estimator alone, e.g. the posterior covariance matrix reveals components of x that are (relatively) more or less certain.

Challenges: high dimension, expensive likelihood \& the (inaccessible) normalising constant

$$
\pi(y):=\int \pi(y \mid x) \pi_{\mathrm{pr}}(x) \mathrm{d} x
$$

Require sample-based approach to break "Curse of Dimensionality".

Traditional Work Horse: Markov Chain Monte Carlo

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^{0} \in X$.
- At state x^{n} generate proposal $x^{\prime} \in X$ from distribution $q\left(x^{\prime} \mid x^{n}\right)$ e.g. via a random walk: $x^{\prime} \sim \mathrm{N}\left(x^{n}, \varepsilon^{2} \mathrm{I}\right)$
- Accept x^{\prime} as a sample with probability

$$
\alpha\left(x^{\prime} \mid x^{n}\right)=\min \left(1, \frac{\pi\left(x^{\prime} \mid y\right) q\left(x^{n} \mid y\right)}{\pi\left(x^{n} \mid x^{\prime}\right) q\left(x^{\prime} \mid x^{n}\right)}\right)
$$

i.e. $x^{n+1}=x^{\prime}$ with probability $\alpha\left(x^{\prime} \mid x^{n}\right)$; otherwise $x^{n+1}=x^{n}$.

Traditional Work Horse: Markov Chain Monte Carlo

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

- Choose initial state $x^{0} \in X$.
- At state x^{n} generate proposal $x^{\prime} \in X$ from distribution $q\left(x^{\prime} \mid x^{n}\right)$ e.g. via a random walk: $x^{\prime} \sim \mathrm{N}\left(x^{n}, \varepsilon^{2} \mathrm{I}\right)$
- Accept x^{\prime} as a sample with probability

$$
\alpha\left(x^{\prime} \mid x^{n}\right)=\min \left(1, \frac{\pi\left(x^{\prime} \mid y\right) q\left(x^{n} \mid y\right)}{\pi\left(x^{n} \mid x^{\prime}\right) q\left(x^{\prime} \mid x^{n}\right)}\right)
$$

i.e. $x^{n+1}=x^{\prime}$ with probability $\alpha\left(x^{\prime} \mid x^{n}\right)$; otherwise $x^{n+1}=x^{n}$.

The samples $h\left(x^{n}\right)$ of some output function ("statistic") $h(\cdot)$ can be used for inference as usual - even though not i.i.d.:

$$
\mathbb{E}_{\pi(x \mid y)}[h(x)] \approx \frac{1}{N} \sum_{i=1}^{N} h\left(x^{n}\right):=\widehat{h}^{\mathrm{MetH}}
$$

Slow Convergence of Random Walk Metropolis-Hastings

But sampling with Metropolis-Hastings can be very inefficient ... (due to burn-in, small step size and large number of rejections)

Slow Convergence of Random Walk Metropolis-Hastings

But sampling with Metropolis-Hastings can be very inefficient ... (due to burn-in, small step size and large number of rejections)

... not like this

Slow Convergence of Random Walk Metropolis-Hastings

But sampling with Metropolis-Hastings can be very inefficient ... (due to burn-in, small step size and large number of rejections)
... not like this ...

... on top of the slow Monte Carlo convergence rate of $O\left(N^{-1 / 2}\right)$!

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

This is a challenging task since:

- $x \in \mathbb{R}^{d}$ is typically high-dimensional (e.g., discretised function)
- $\pi_{\text {pos }}$ is in general non-Gaussian
(even if π_{pr} and observational noise are Gaussian)
- evaluations of likelihood may be expensive (e.g., solution of a PDE)

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

This is a challenging task since:

- $x \in \mathbb{R}^{d}$ is typically high-dimensional (e.g., discretised function)
- $\pi_{\text {pos }}$ is in general non-Gaussian (even if π_{pr} and observational noise are Gaussian)
- evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools

Transport Maps, Optimisation, Principle Component Analysis, Model Order Reduction, Hierarchies, Sparsity, Low Rank Approximation

Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density $\pi_{\text {pos }}$) analytically (at least approximately) for more efficient inference.

This is a challenging task since:

- $x \in \mathbb{R}^{d}$ is typically high-dimensional (e.g., discretised function)
- $\pi_{\text {pos }}$ is in general non-Gaussian (even if π_{pr} and observational noise are Gaussian)
- evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools - a playground for a numerical analyst!
Transport Maps, Optimisation, Principle Component Analysis, Model Order Reduction, Hierarchies, Sparsity, Low Rank Approximation

Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\sharp} \eta=\pi$ (push-forward) (invertible)

Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\sharp} \eta=\pi$ (push-forward) (invertible)

- In principle, enables exact (independent, unweighted) sampling!

Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

- Choose a reference distribution η (e.g., standard Gaussian)
- Seek transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T_{\sharp} \eta=\pi$ (push-forward) (invertible)

- In principle, enables exact (independent, unweighted) sampling!
- Approximately satisfying conditions still useful: Preconditioning!

Variational Inference

- Goal: Sampling from target density $\pi(x)$

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density η, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(\eta \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
\mathscr{D}_{\mathrm{KL}}(p \| q) & :=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \quad \ldots \\
T_{\sharp} p(x) & :=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \ldots
\end{aligned} \quad \text { Kullback-Leibler divergence } \quad \text { push-forward of } p
$$

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density η, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(\eta \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
& \mathscr{D}_{\mathrm{KL}}(p \| q):=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \quad \ldots \\
& T_{\sharp} p(x):=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \quad \ldots \\
& \text { Kullback-Leibler divergence } \\
& \text { push-forward of } p
\end{aligned}
$$

- Advantage of using $\mathscr{D}_{\mathrm{KL}}$: normalising constant for π is not needed

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density η, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(\eta \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
& \mathscr{D}_{\mathrm{KL}}(p \| q):=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \quad \ldots \\
& T_{\sharp} p(x):=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \quad \ldots \\
& \text { Kullback-Leibler divergence } \\
& \text { push-forward of } p
\end{aligned}
$$

- Advantage of using $\mathscr{D}_{\mathrm{KL}}$: normalising constant for π is not needed
- Minimise over some suitable class \mathscr{T} of maps T (where ideally Jacobian determinant $\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)$ is easy to evaluate)

Variational Inference

- Goal: Sampling from target density $\pi(x)$
- Given a reference density η, find an invertible map \hat{T} such that

$$
\hat{T}:=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(\eta \| T_{\sharp}^{-1} \pi\right)
$$

where

$$
\begin{aligned}
\mathscr{D}_{\mathrm{KL}}(p \| q) & :=\int \log \left(\frac{p(x)}{q(x)}\right) p(x) \mathrm{d} x \quad \ldots \\
T_{\sharp} p(x) & :=p\left(T^{-1}(x)\right)\left|\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)\right| \ldots
\end{aligned} \quad \text { Kullback-Leibler divergence } \quad \text { push-forward of } p
$$

- Advantage of using $\mathscr{D}_{\mathrm{KL}}$: normalising constant for π is not needed
- Minimise over some suitable class \mathscr{T} of maps T (where ideally Jacobian determinant $\operatorname{det}\left(\nabla_{x} T^{-1}(x)\right)$ is easy to evaluate)
- To improve: enrich class \mathscr{T} or use samples of $T_{\sharp}^{-1} \pi$ as proposals for MCMC or in importance sampling (see below)

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport or Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing or Autoregressive Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport or Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing or Autoregressive Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)
(3) Kernel-based variational inference: Stein Variational Methods [Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018], [Chen, Wu, Chen, O'Leary-Roseberry, Ghattas, 2019]
(4) Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]
(5) Layers of hierarchical invertible neural networks (HINT) not today! [Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv:1905.10687]

Many Choices ("Architectures") for \mathscr{T} possible

Examples: (list not comprehensive!!)

(1) Optimal Transport or Knothe-Rosenblatt Rearrangement [Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]
(2) Normalizing or Autoregressive Flows [Rezende, Mohamed, 2015] (and related methods in the ML literature)
(3) Kernel-based variational inference: Stein Variational Methods [Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018], [Chen, Wu, Chen, O'Leary-Roseberry, Ghattas, 2019]
(4) Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]
(5) Layers of hierarchical invertible neural networks (HINT) not today! [Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv:1905.10687]
(6) Low-rank tensor approximation of Knothe-Rosenblatt rearrangement [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

Approximation and Sampling of Multivariate Probability Distributions in the Tensor Train Decomposition
[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

Variational Inference with Triangular Maps

- In general, in Variational Inference aim to find

$$
\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)
$$

- Note:

$$
\mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=-\mathbb{E}_{\boldsymbol{u} \sim \eta}[\log \pi(\boldsymbol{T}(\boldsymbol{u}))+\log |\operatorname{det} \nabla \boldsymbol{T}(\boldsymbol{u})|]+\text { const }
$$

Variational Inference with Triangular Maps

- In general, in Variational Inference aim to find

$$
\underset{T}{\operatorname{argmin}} \mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)
$$

- Note:

$$
\mathscr{D}_{\mathrm{KL}}\left(T_{\sharp} \eta \| \pi\right)=-\mathbb{E}_{\boldsymbol{u} \sim \eta}[\log \pi(\boldsymbol{T}(\boldsymbol{u}))+\log |\operatorname{det} \nabla \boldsymbol{T}(\boldsymbol{u})|]+\text { const }
$$

- Particularly useful family \mathscr{T} are Knothe-Rosenblatt triangular rearrangements (see [Marzouk, Moshely, Parno, Spantini, 2016]):

$$
\left.T(x)=\left[\begin{array}{l}
T_{1}\left(x_{1}\right) \\
T_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
T_{d}\left(x_{1}, x_{2}, \ldots, x_{d}\right)
\end{array}\right] \quad \text { (= autoregressive flow in } \mathrm{ML}\right)
$$

Then: $\log |\operatorname{det} \nabla \boldsymbol{T}(\boldsymbol{u})|=\sum_{k} \log \partial_{x_{k}} T^{k}$

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Conditional Distribution Sampling [Rosenblatt '52] (explicitly available!)

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Conditional Distribution Sampling [Rosenblatt '52] (explicitly available!)

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- Can sample (up to normalisation with known scaling factor)

$$
x_{k} \sim \pi_{k}\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right) \sim \int \pi\left(x_{1}, \ldots, x_{d}\right) d x_{k+1} \cdots d x_{d}
$$

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Conditional Distribution Sampling [Rosenblatt '52] (explicitly available!)

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- 1st step: Produce sample x_{1}^{i} via 1D CDF-inversion from

$$
\pi_{1}\left(x_{1}\right) \sim \int \pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{2} \cdots d x_{d}
$$

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Conditional Distribution Sampling [Rosenblatt '52] (explicitly available!)

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- 1st step: Produce sample x_{1}^{i} via 1D CDF-inversion from

$$
\pi_{1}\left(x_{1}\right) \sim \int \pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{2} \cdots d x_{d}
$$

- k-th step: Given $x_{1}^{i}, \ldots, x_{k-1}^{i}$ sample x_{k}^{i} via 1D CDF-inversion from $\pi_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim \int \pi\left(x_{1}^{i}, \ldots, x_{k-1}^{i}, x_{k}, x_{k+1}, \ldots, x_{d}\right) d x_{k+1} \cdots d x_{d}$

Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, \exists ! triangular map satisfying $T_{\sharp} \eta=\pi$ (for abs. cont. η, π on \mathbb{R}^{d})
Conditional Distribution Sampling [Rosenblatt '52] (explicitly available!)

- Any density factorises into product of conditional densities:

$$
\pi\left(x_{1}, \ldots, x_{d}\right)=\pi_{1}\left(x_{1}\right) \pi_{2}\left(x_{2} \mid x_{1}\right) \cdots \pi_{d}\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)
$$

- 1st step: Produce sample x_{1}^{i} via 1D CDF-inversion from

$$
\pi_{1}\left(x_{1}\right) \sim \int \pi\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{2} \cdots d x_{d}
$$

- k-th step: Given $x_{1}^{i}, \ldots, x_{k-1}^{i}$ sample x_{k}^{i} via 1D CDF-inversion from

$$
\pi_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim \int \pi\left(x_{1}^{i}, \ldots, x_{k-1}^{i}, x_{k}, x_{k+1}, \ldots, x_{d}\right) d x_{k+1} \cdots d x_{d}
$$

Problem: $(d-k)$-dimensional integration at k-th step!
Remedy: Find approximation $\tilde{\pi} \approx \pi$ where integration is cheap!

Low-rank Tensor Approximation of Distributions

Low-rank tensor decomposition \Leftrightarrow separation of variables:

- Tensor grid with n points per direction (or n polynomial basis fcts.)
- Approximate: $\underbrace{\pi\left(x_{1}, \ldots, x_{d}\right)}_{\text {tensor }} \approx \underbrace{\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \pi_{\alpha}^{2}\left(x_{2}\right) \cdots \pi_{\alpha}^{d}\left(x_{d}\right)}_{\text {tensor product decomposition }}$
- Many low-rank tensor formats exist [Kolda, Bader '09], [Hackbusch '12]

Conditional Distribution Sampler (with factorised distribution)

For the low-rank tensor approximation

$$
\pi(x) \approx \tilde{\pi}(x)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \cdot \pi_{\alpha}^{2}\left(x_{2}\right) \cdots \pi_{\alpha}^{d}\left(x_{d}\right)
$$

the k-th step of the CD sampler, given $x_{1}^{i}, \ldots, x_{k-1}^{i}$, simplifies to

$$
\begin{aligned}
\tilde{\pi}_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim & \sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}^{i}\right) \cdots \pi_{\alpha}^{k-1}\left(x_{k-1}^{i}\right) \ldots \\
& \ldots \pi_{\alpha}^{k}\left(x_{k}\right) \ldots \\
& \ldots \underbrace{\int \pi_{\alpha}^{k+1}\left(x_{k+1}\right) d x_{k+1} \cdots \int \pi_{\alpha}^{d}\left(x_{d}\right) d x_{d}}_{\text {Repeated 1D integrals! } \quad \text { linear in } d}
\end{aligned}
$$

Conditional Distribution Sampler (with factorised distribution)

For the low-rank tensor approximation

$$
\pi(x) \approx \tilde{\pi}(x)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \cdot \pi_{\alpha}^{2}\left(x_{2}\right) \cdots \pi_{\alpha}^{d}\left(x_{d}\right)
$$

the k-th step of the CD sampler, given $x_{1}^{i}, \ldots, x_{k-1}^{i}$, simplifies to

$$
\begin{aligned}
\tilde{\pi}_{k}\left(x_{k} \mid x_{1}^{i}, \ldots, x_{k-1}^{i}\right) \sim & \sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}^{i}\right) \cdots \pi_{\alpha}^{k-1}\left(x_{k-1}^{i}\right) \ldots \\
& \ldots \pi_{\alpha}^{k}\left(x_{k}\right) \ldots \\
& \ldots \underbrace{\int \pi_{\alpha}^{k+1}\left(x_{k+1}\right) d x_{k+1} \cdots \int \pi_{\alpha}^{d}\left(x_{d}\right) d x_{d}}_{\text {Repeated 1D integrals! } \quad \text { linear in } d}
\end{aligned}
$$

To sample (in each step): Simple 1D CDF-inversions
linear in d

Low-rank Decomposition (Two Variables)

Collect discretised values of $\pi\left(\theta_{1}, \theta_{2}\right)$ on $n \times n$ grid into a matrix:

$$
P(i, j)=\sum_{\alpha=1}^{r} V_{\alpha}(i) W_{\alpha}(j)+\mathscr{O}(\varepsilon)
$$

- Rank $r \ll n$ (exploiting structure, smoothness, ...)
- $\operatorname{mem}(V)+\operatorname{mem}(W)=2 n r \ll n^{2}=\operatorname{mem}(P)$
- SVD provides optimal ε for fixed r (s.t. $\min _{V, W}\left\|P-V W^{*}\right\|_{F}^{2}$)
- But requires all n^{2} entries of P !

Low-rank Decomposition (Two Variables)

Collect discretised values of $\pi\left(\theta_{1}, \theta_{2}\right)$ on $n \times n$ grid into a matrix:

$$
P(i, j)=\sum_{\alpha=1}^{r} V_{\alpha}(i) W_{\alpha}(j)+\mathscr{O}(\varepsilon)
$$

- Rank $r \ll n$ (exploiting structure, smoothness, ...)
- $\operatorname{mem}(V)+\operatorname{mem}(W)=2 n r \ll n^{2}=\operatorname{mem}(P)$
- SVD provides optimal ε for fixed r (s.t. $\min _{V, W}\left\|P-V W^{*}\right\|_{F}^{2}$)
- But requires all n^{2} entries of P !
n^{d} in d dimensions!

Cross Algorithm (construct low-rank factorisation from few entries)

- Interpolation arguments show: for some suitable index sets $\mathscr{I}, \mathscr{J} \subset\{1, \ldots, n\}$ with $|\mathscr{I}|=|\mathscr{J}|=r$, the cross decomposition

Cross Algorithm (construct low-rank factorisation from few entries)

- Interpolation arguments show: for some suitable index sets $\mathscr{I}, \mathscr{J} \subset\{1, \ldots, n\}$ with $|\mathscr{I}|=|\mathscr{J}|=r$, the cross decomposition

- Maxvol principle gives 'best' indices \mathscr{I}, \mathscr{J} [Goreinov, Tyrtyshnikov '01]

$$
|\operatorname{det} P(\mathscr{I}, \mathscr{\mathscr { F }})|=\max _{\hat{\mathscr{F}}, \hat{\mathscr{L}}}|\operatorname{det} P(\hat{\mathscr{F}}, \hat{\mathscr{F}})| \Rightarrow\|P-\tilde{P}\|_{c} \leq(r+1) \min _{\text {rank } \hat{P}=r}\|P-\hat{P}\|_{2}
$$

Cross Algorithm (construct low-rank factorisation from few entries)

- Interpolation arguments show: for some suitable index sets $\mathscr{I}, \mathscr{J} \subset\{1, \ldots, n\}$ with $|\mathscr{I}|=|\mathscr{J}|=r$, the cross decomposition

- Maxvol principle gives 'best' indices \mathscr{I}, \mathscr{J} [Goreinov, Tyrtyshnikov '01] $|\operatorname{det} P(\mathscr{I}, \mathscr{J})|=\max _{\hat{\mathscr{F}}, \hat{\mathscr{F}}}|\operatorname{det} P(\hat{\mathscr{F}}, \hat{\mathscr{J}})| \Rightarrow\|P-\tilde{P}\|_{c} \leq(r+1) \min _{\text {rank } \hat{P}=r}\|P-\hat{P}\|_{2}$ (NP-hard)
- But how can we find good sets \mathscr{I}, \mathscr{J} in practice?
- And how can we generalise this to $d>2$?

Alternating Iteration (for cross approximation)

\square

Alternating Iteration (for cross approximation)

- Practically realizable strategy (with $\mathscr{O}(2 n r)$ samples \& $\mathscr{O}\left(n r^{2}\right)$ flops).
- For numerical stability use rank-revealing QR in practice.
- To adapt rank expand $V \rightarrow\left[\begin{array}{ll}V & Z\end{array}\right]$) (with residual Z)
- Several similar algorithms exist: e.g. ACA [Bebendorf '00] or EIM [Barrault et al '04]

Tensor Train (TT) Decomposition (Many Variables)

- Many variables: Matrix Product States/Tensor Train

$$
\pi\left(i_{1} \ldots i_{d}\right)=\sum_{\substack{\alpha_{k}=1 \\ 0<k<d}}^{r_{k}} \pi_{\alpha_{1}}^{1}\left(i_{1}\right) \cdot \pi_{\alpha_{1}, \alpha_{2}}^{2}\left(i_{2}\right) \cdot \pi_{\alpha_{2}, \alpha_{3}}^{3}\left(i_{3}\right) \cdots \pi_{\alpha_{d-1}}^{d}\left(i_{d}\right)
$$

.. . $\quad r_{k-1}$

[Wilson '75] (comput. physics), [White '93], [Verstraete '04]; [Oseledets '09]

Tensor Train (TT) Decomposition (Many Variables)

- Many variables: Matrix Product States/Tensor Train

$$
\pi\left(i_{1} \ldots i_{d}\right)=\sum_{\substack{\alpha_{k}=1 \\ 0<k<d}}^{r_{k}} \pi_{\alpha_{1}}^{1}\left(i_{1}\right) \cdot \pi_{\alpha_{1}, \alpha_{2}}^{2}\left(i_{2}\right) \cdot \pi_{\alpha_{2}, \alpha_{3}}^{3}\left(i_{3}\right) \cdots \pi_{\alpha_{d-1}}^{d}\left(i_{d}\right)
$$

[Wilson '75] (comput. physics), [White '93], [Verstraete '04]; [Oseledets '09]

- TT blocks π^{k} are three-dimensional $r_{k-1} \times n \times r_{k}$ tensors
- with TT ranks $r_{1}, \ldots, r_{d-1} \leq r$

Tensor Train (TT) Decomposition (Many Variables)

- Many variables: Matrix Product States/Tensor Train

$$
\pi\left(i_{1} \ldots i_{d}\right)=\sum_{\substack{\alpha_{k}=1 \\ 0<k<d}}^{r_{k}} \pi_{\alpha_{1}}^{1}\left(i_{1}\right) \cdot \pi_{\alpha_{1}, \alpha_{2}}^{2}\left(i_{2}\right) \cdot \pi_{\alpha_{2}, \alpha_{3}}^{3}\left(i_{3}\right) \cdots \pi_{\alpha_{d-1}}^{d}\left(i_{d}\right)
$$

[Wilson '75] (comput. physics), [White '93], [Verstraete '04]; [Oseledets '09]

- TT blocks π^{k} are three-dimensional $r_{k-1} \times n \times r_{k}$ tensors
- with TT ranks $r_{1}, \ldots, r_{d-1} \leq r$
- Storage: $\mathscr{O}\left(d n r^{2}\right)$

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}\left(i_{k}\right)=\pi\left(\mathscr{I}_{k-1}, i_{k}, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=\operatorname{pivots}_{\text {row }}\left(\pi^{k}\right)$
(using maxvol principle on different matrizations of tensor in each step)

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}\left(\underline{\mathbf{i}_{\mathbf{k}}}\right)=\pi\left(\mathscr{I}_{k-1}, \underline{\mathbf{i}_{\mathbf{k}}}, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=\operatorname{pivots}_{\text {row }}\left(\pi^{k}\right)$ (using maxvol principle on different matrizations of tensor in each step)

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}()=\pi\left(\mathscr{I}_{k-1},, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=\operatorname{pivots}_{\text {row }}\left(\pi^{k}\right)$ (using maxvol principle on different matrizations of tensor in each step)

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}()=\pi\left(\mathscr{I}_{k-1},, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=\operatorname{pivots}_{\text {row }}\left(\pi^{k}\right)$ (using maxvol principle on different matrizations of tensor in each step)

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}()=\pi\left(\mathscr{I}_{k-1},, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=$ pivots $_{\text {row }}\left(\pi^{k}\right)$ (using maxvol principle on different matrizations of tensor in each step)

(3) Set $k \rightarrow k+1$ and move to the next block.

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}()=\pi\left(\mathscr{I}_{k-1},, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=$ pivots $_{\text {row }}\left(\pi^{k}\right)$ (using maxvol principle on different matrizations of tensor in each step)

(3) Set $k \rightarrow k+1$ and move to the next block.
(4) When $k=d$, switch direction and update index set \mathscr{J}_{k-1}.

Given random initial sets $\mathscr{J}_{0}, \ldots, \mathscr{J}_{d}$ iterate: [Oseledets, Tyrtyshnikov '10]
(1) Update k th TT block: $\pi^{k}()=\pi\left(\mathscr{I}_{k-1},, \mathscr{J}_{k}\right)$
(2) Update k th index set: $\mathscr{I}_{k}=$ pivots $_{\text {row }}\left(\pi^{k}\right)$ (using maxvol principle on different matrizations of tensor in each step)

(3) Set $k \rightarrow k+1$ and move to the next block.
(4) When $k=d$, switch direction and update index set \mathscr{J}_{k-1}.

Cost: $\mathscr{O}\left(d n r^{2}\right)$ samples \& $\mathscr{O}\left(d n r^{3}\right)$ flops per iteration

Tensor Train (TT) Transport Maps (Summary \& Comments) [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

- Generic - not problem specific ('black box')
- Cross approximation: ‘sequential’ design along 1D lines
- Separable product form: $\tilde{\pi}\left(x_{1}, \ldots, x_{d}\right)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \ldots \pi_{\alpha}^{d}\left(x_{d}\right)$

Cheap construction/storage \& low \# model evals linear in d
Cheap integration w.r.t. x
linear in d
Cheap samples via conditional distribution method linear in d

Tensor Train (TT) Transport Maps (Summary \& Comments) [Dolgov, Anaya-lzquierdo, Fox, RS, 2019]

- Generic - not problem specific ('black box')
- Cross approximation: ‘sequential’ design along 1D lines
- Separable product form: $\tilde{\pi}\left(x_{1}, \ldots, x_{d}\right)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \ldots \pi_{\alpha}^{d}\left(x_{d}\right)$

Cheap construction/storage \& low \# model evals linear in d
Cheap integration w.r.t. x
linear in d
Cheap samples via conditional distribution method linear in d

- Tuneable approximation error ε (by adapting ranks r):
\Longrightarrow cost \& storage (poly)logarithmic in ε
next slide

Tensor Train (TT) Transport Maps (Summary \& Comments) [Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

- Generic - not problem specific ('black box')
- Cross approximation: ‘sequential’ design along 1D lines
- Separable product form: $\tilde{\pi}\left(x_{1}, \ldots, x_{d}\right)=\sum_{|\alpha| \leq r} \pi_{\alpha}^{1}\left(x_{1}\right) \ldots \pi_{\alpha}^{d}\left(x_{d}\right)$

Cheap construction/storage \& low \# model evals linear in d

Cheap integration w.r.t. x
Cheap samples via conditional distribution method
linear in d

- Tuneable approximation error ε (by adapting ranks r):
\Longrightarrow cost \& storage (poly)logarithmic in ε
next slide
- Many known ways to use these samples for fast inference! (as proposals for MCMC, as control variates, importance weighting, ...)

Theoretical Result [Rohrbach, Dolgov, Grasedyck, RS, 2020]

For Gaussian distributions $\pi(x)$ we have the following result: Let

$$
\pi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \quad x \mapsto \exp \left(-\frac{1}{2} x^{T} \Sigma x\right)
$$

and define

$$
\Sigma:=\left[\begin{array}{cc}
\Sigma_{11}^{(k)} & \Gamma_{k}^{T} \\
\Gamma_{k} & \Sigma_{22}^{(k)}
\end{array}\right] \quad \text { where } \quad \Gamma_{k} \in \mathbb{R}^{(d-k) \times k} .
$$

Theorem. Let Σ be SPD with $\lambda_{\text {min }}>0$. Suppose $\rho:=\max _{k} \operatorname{rank}\left(\Gamma_{k}\right)$ and $\sigma:=\max _{k, i} \sigma_{i}^{(k)}$, where $\sigma_{i}^{(k)}$ are the singular values of Γ_{k}. Then, for all $\varepsilon>0$, there exists a TT-approximation $\tilde{\pi}_{\varepsilon}$ s.t.

$$
\left\|\pi-\tilde{\pi}_{\varepsilon}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \leq \varepsilon\|\pi\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

and the TT-ranks of $\tilde{\pi}_{\varepsilon}$ are bounded by

$$
r \leq\left(\left(1+7 \frac{\sigma}{\lambda_{\text {min }}}\right) \log \left(7 \rho \frac{d}{\varepsilon}\right)\right)^{\rho} .
$$

How to use the TT-CD sampler to estimate $\mathbb{E}_{\pi} Q$?

Problem: We are sampling from approximate $\tilde{\pi}=\pi+\mathscr{O}(\varepsilon)$.

How to use the TT-CD sampler to estimate $\mathbb{E}_{\pi} Q$?

Problem: We are sampling from approximate $\tilde{\pi}=\pi+\mathscr{O}(\varepsilon)$.

Option 0: Classical variational inference

- Explicit integration (linear in d): get biased estimator $\mathbb{E}_{\tilde{\pi}} Q \approx \mathbb{E}_{\pi} Q$

How to use the TT-CD sampler to estimate $\mathbb{E}_{\pi} Q$?

Problem: We are sampling from approximate $\tilde{\pi}=\pi+\mathscr{O}(\varepsilon)$.
Option 0: Classical variational inference

- Explicit integration (linear in d): get biased estimator $\mathbb{E}_{\tilde{\pi}} Q \approx \mathbb{E}_{\pi} Q$
- Non-smooth Q : use Monte Carlo sampling, or better, QMC 'seeds'

Sampling from exact π : Unbiased estimates of $\mathbb{E}_{\pi} Q$

Option 1: Use $\left\{x_{\tilde{\pi}}^{i}\right\}$ as (i.i.d.) proposals in Metropolis-Hastings

- Accept proposal $x_{\tilde{\pi}}^{i}$ with probability $\alpha=\min \left(1, \frac{\pi\left(x_{\tilde{\pi}}^{i}\right) \tilde{\pi}\left(x_{\pi}^{i-1}\right)}{\pi\left(x_{\pi}^{i-1}\right) \tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}\right)$
- Can prove that rejection rate $\sim \varepsilon$ and IACT $\tau \sim 1+\varepsilon$

Sampling from exact π : Unbiased estimates of $\mathbb{E}_{\pi} Q$

Option 1: Use $\left\{x_{\tilde{\pi}}^{i}\right\}$ as (i.i.d.) proposals in Metropolis-Hastings

- Accept proposal $x_{\tilde{\pi}}^{i}$ with probability $\alpha=\min \left(1, \frac{\pi\left(x_{\tilde{\pi}}^{i}\right) \tilde{\pi}\left(x_{\pi}^{i-1}\right)}{\pi\left(x_{\pi}^{i-1}\right) \tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}\right)$
- Can prove that rejection rate $\sim \varepsilon$ and IACT $\tau \sim 1+\varepsilon$

Option 2: Use $\tilde{\pi}$ importance weighting with QMC quadrature

$$
\mathbb{E}_{\pi} Q \approx \frac{1}{Z} \frac{1}{N} \sum_{i=1}^{N} Q\left(x_{\tilde{\pi}}^{i}\right) \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)} \quad \text { with } \quad Z=\frac{1}{N} \sum_{i=1}^{N} \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}
$$

- We can use an unbiased (randomised) QMC rule for both integrals.

Sampling from exact π : Unbiased estimates of $\mathbb{E}_{\pi} Q$

 using TT approximation as preconditioner, importance weight or control variateOption 1: Use $\left\{x_{\tilde{\pi}}^{i}\right\}$ as (i.i.d.) proposals in Metropolis-Hastings

- Accept proposal $x_{\tilde{\pi}}^{i}$ with probability $\alpha=\min \left(1, \frac{\pi\left(x_{\tilde{\pi}}^{i}\right) \tilde{\pi}\left(x_{\pi}^{i-1}\right)}{\pi\left(x_{\pi}^{i-1}\right) \tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}\right)$
- Can prove that rejection rate $\sim \varepsilon$ and IACT $\tau \sim 1+\varepsilon$

Option 2: Use $\tilde{\pi}$ importance weighting with QMC quadrature

$$
\mathbb{E}_{\pi} Q \approx \frac{1}{Z} \frac{1}{N} \sum_{i=1}^{N} Q\left(x_{\tilde{\pi}}^{i}\right) \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)} \quad \text { with } \quad Z=\frac{1}{N} \sum_{i=1}^{N} \frac{\pi\left(x_{\tilde{\pi}}^{i}\right)}{\tilde{\pi}\left(x_{\tilde{\pi}}^{i}\right)}
$$

- We can use an unbiased (randomised) QMC rule for both integrals.

Option 3: Use estimate w.r.t. $\tilde{\pi}$ as control variate (multilevel MCMC)

Numerical Example (Inverse Stationary Diffusion Problem)

Model Problem (representative for subsurface flow or structural mechanics)

$$
\begin{aligned}
-\nabla \kappa(\boldsymbol{\xi}, x) \nabla u(\xi, x) & =0 & \boldsymbol{\xi} \in(0,1)^{2} \\
\left.u\right|_{\xi_{1}=0} & =1, & \left.u\right|_{\xi_{1}=1}=0 \\
\left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=0} & =0, & \left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=1}=0
\end{aligned}
$$

- Karhunen-Loève expansion of $\log \kappa(\xi, x)=\sum_{k=1}^{d} \phi_{k}(\xi) x_{k}$ with prior

$$
d=11, x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \text { [Eigel, Pfeffer, Schneider '16] }
$$

Numerical Example (Inverse Stationary Diffusion Problem)

Model Problem (representative for subsurface flow or structural mechanics)

$$
\begin{aligned}
-\nabla \kappa(\boldsymbol{\xi}, x) \nabla u(\xi, x) & =0 & \boldsymbol{\xi} \in(0,1)^{2} \\
\left.u\right|_{\xi_{1}=0} & =1, & \left.u\right|_{\xi_{1}=1}=0 \\
\left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=0} & =0, & \left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=1}=0
\end{aligned}
$$

- Karhunen-Loève expansion of $\log \kappa(\xi, x)=\sum_{k=1}^{d} \phi_{k}(\xi) x_{k}$ with prior

$$
d=11, x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \text { [Eigel, Pfeffer, Schneider '16] }
$$

- Discretisation with bilinear FEs on uniform mesh with $h=1 / 64$.

Numerical Example (Inverse Stationary Diffusion Problem)

Model Problem (representative for subsurface flow or structural mechanics)

$$
\begin{aligned}
-\nabla \kappa(\boldsymbol{\xi}, x) \nabla u(\xi, x) & =0 & \boldsymbol{\xi} \in(0,1)^{2} \\
\left.u\right|_{\xi_{1}=0} & =1, & \left.u\right|_{\xi_{1}=1}=0 \\
\left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=0} & =0, & \left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=1}=0
\end{aligned}
$$

- Karhunen-Loève expansion of $\log \kappa(\xi, x)=\sum_{k=1}^{d} \phi_{k}(\xi) x_{k}$ with prior

$$
d=11, x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \text { [Eigel, Pfeffer, Schneider '16] }
$$

- Discretisation with bilinear FEs on uniform mesh with $h=1 / 64$.
- Data: average pressure in 9 locations (synthetic, i.e. for some ξ^{*})

Numerical Example (Inverse Stationary Diffusion Problem)

Model Problem (representative for subsurface flow or structural mechanics)

$$
\begin{aligned}
-\nabla \kappa(\xi, x) \nabla u(\xi, x) & =0 & \xi \in(0,1)^{2} \\
\left.u\right|_{\xi_{1}=0} & =1, & \left.u\right|_{\xi_{1}=1}=0 \\
\left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=0} & =0, & \left.\frac{\partial u}{\partial n}\right|_{\xi_{2}=1}=0
\end{aligned}
$$

- Karhunen-Loève expansion of $\log \kappa(\xi, x)=\sum_{k=1}^{d} \phi_{k}(\xi) x_{k}$ with prior

$$
d=11, x_{k} \sim U[-1,1],\left\|\phi_{k}\right\|_{\infty}=\mathscr{O}\left(k^{-\frac{3}{2}}\right) \text { [Eigel, Pfeffer, Schneider '16] }
$$

- Discretisation with bilinear FEs on uniform mesh with $h=1 / 64$.
- Data: average pressure in 9 locations (synthetic, i.e. for some $\boldsymbol{\xi}^{*}$)
- Qol $Q=h(u(\cdot, x))$: probability that flux exceeds 1.5 (not smooth!)

Comparison against DRAM (for inverse diffusion problem)

TT-MH TT conditional distribution samples (iid) as proposals for MCMC TT-qIW TT surrogate for importance sampling with QMC DRAM Delayed Rejection Adaptive Metropolis [Haario et al, 2006]

Comparison against DRAM (for inverse diffusion problem)

noise level $\sigma_{e}^{2}=0.01$

noise level $\sigma_{e}^{2}=0.001$

TT-MH TT conditional distribution samples (iid) as proposals for MCMC TT-qIW TT surrogate for importance sampling with QMC DRAM Delayed Rejection Adaptive Metropolis [Haario et al, 2006]

Samples - Comparison TT-CD vs. DRAM

DRAM

TT-MH (i.i.d. seeds)

Multilevel Markov Chain Monte Carlo
 [Dodwell, Ketelsen, RS, Teckentrup, 2015 \& 2019],
 [Cui, Detommaso, RS, 2019]

Exploiting Model Hierarchy (same inverse diffusion problem)

Monte Carlo (assuming first π can be sampled - forward problem)

- Standard Monte Carlo estimator for $\mathbb{E}[Q]:($ where $Q=h(u(\cdot, x)) \in \mathbb{R})$

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

Monte Carlo (assuming first π can be sampled - forward problem)

- Standard Monte Carlo estimator for $\mathbb{E}[Q]:($ where $Q=h(u(\cdot, x)) \in \mathbb{R})$

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

Monte Carlo (assuming first π can be sampled - forward problem)

- Standard Monte Carlo estimator for $\mathbb{E}[Q]:($ where $Q=h(u(\cdot, x)) \in \mathbb{R})$

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

- Assuming $\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathscr{O}\left(2^{-\alpha \ell}\right)$ and $\mathbb{E}\left[\right.$ Cost $\left._{\ell}\right]=\mathscr{O}\left(2^{\gamma \ell}\right)$, to get MSE $=\mathscr{O}\left(\varepsilon^{2}\right)$, we need $L \sim \log _{2}\left(\varepsilon^{-1}\right) \alpha^{-1} \& N \sim \varepsilon^{-2}$

Monte Carlo (assuming first π can be sampled - forward problem)

- Standard Monte Carlo estimator for $\mathbb{E}[Q]:($ where $Q=h(u(\cdot, x)) \in \mathbb{R})$

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

$$
\underbrace{\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: \text {MSE }}=\underbrace{\frac{\mathbb{V}\left[Q_{L}\right]}{N}}_{\text {sampling error }}+\underbrace{\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}}_{\text {model error ("bias") }}
$$

- Assuming $\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathscr{O}\left(2^{-\alpha \ell}\right)$ and $\mathbb{E}\left[\right.$ Cost $\left._{\ell}\right]=\mathscr{O}\left(2^{\gamma \ell}\right)$, to get MSE $=\mathscr{O}\left(\varepsilon^{2}\right)$, we need $L \sim \log _{2}\left(\varepsilon^{-1}\right) \alpha^{-1} \& N \sim \varepsilon^{-2}$

Monte Carlo Complexity Theorem

$$
\operatorname{Cost}\left(\hat{Q}_{L}^{M C}\right)=\mathscr{O}\left(N M_{L}\right)=\mathscr{O}\left(\varepsilon^{-2-\gamma / \alpha}\right) \text { to obtain } M S E=\mathscr{O}\left(\varepsilon^{2}\right)
$$

Monte Carlo (assuming first π can be sampled - forward problem)

- Standard Monte Carlo estimator for $\mathbb{E}[Q]:($ where $Q=h(u(\cdot, x)) \in \mathbb{R})$

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

$$
\underbrace{\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: \text {MSE }}=\underbrace{\frac{\mathbb{V}\left[Q_{L}\right]}{N}}_{\text {sampling error }}+\underbrace{\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}}_{\text {model error ("bias") }}
$$

- Assuming $\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathscr{O}\left(2^{-\alpha \ell}\right)$ and $\mathbb{E}\left[\right.$ Cost $\left._{\ell}\right]=\mathscr{O}\left(2^{\gamma \ell}\right)$, to get MSE $=\mathscr{O}\left(\varepsilon^{2}\right)$, we need $L \sim \log _{2}\left(\varepsilon^{-1}\right) \alpha^{-1} \& N \sim \varepsilon^{-2}$

Monte Carlo Complexity Thm. (2D model problem w. AMG: $\alpha=1, \gamma=2$)

$$
\operatorname{Cost}\left(\hat{Q}_{L}^{\mathrm{MC}}\right)=\mathscr{O}\left(N M_{L}\right)=\mathscr{O}\left(\varepsilon^{-2-\gamma / \alpha}\right) \text { to obtain } \mathrm{MSE}=\mathscr{O}\left(\varepsilon^{2}\right)
$$

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially

$$
Q_{L}=Q_{0}+\sum_{\ell=1}^{L} Q_{\ell}-Q_{\ell-1}
$$

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right] \quad \text { Control Variates!! }
$$

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right] \quad \text { Control Variates!! }
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{M C}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{M C} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right] \quad \text { Control Variates!! }
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{\mathrm{MC}}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{\mathrm{MC}} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Key Observation: (Variance Reduction! Corrections cheaper!)
Level $L: \mathbb{V}\left[Q_{L}-Q_{L-1}\right] \rightarrow 0$ as $L \rightarrow \infty \Rightarrow N_{L}=\mathscr{O}(1)$ (best case)

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right] \quad \text { Control Variates!! }
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{M C}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{M C} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Key Observation: (Variance Reduction! Corrections cheaper!)
Level $L: \mathbb{V}\left[Q_{L}-Q_{L-1}\right] \rightarrow 0$ as $L \rightarrow \infty \Rightarrow N_{L}=\mathscr{O}(1)$ (best case)

Level $0: \quad N_{0} \sim N$ but $\operatorname{Cost}_{0}=\mathscr{O}\left(M_{0}\right)=\mathscr{O}(1)$

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right] \quad \text { Control Variates!! }
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{\mathrm{MC}}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{\mathrm{MC}} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Key Observation: (Variance Reduction! Corrections cheaper!)
Level $L: \mathbb{V}\left[Q_{L}-Q_{L-1}\right] \rightarrow 0$ as $L \rightarrow \infty \Rightarrow N_{L}=\mathscr{O}(1)$ (best case)

Level $\ell: N_{\ell}$ optimised to "balance" with cost on levels 0 and L

Level $0: \quad N_{0} \sim N$ but $\operatorname{Cost}_{0}=\mathscr{O}\left(M_{0}\right)=\mathscr{O}(1)$

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]
Assume approximation error $\mathscr{O}\left(2^{-\alpha \ell}\right)$, Cost/sample $\mathscr{O}\left(2^{\gamma \ell}\right)$ and

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathscr{O}\left(2^{-\beta \ell}\right) \quad \text { (strong error/variance reduction) }
$$

Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ to obtain MSE $=\mathscr{O}\left(\varepsilon^{2}\right)$ with

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathscr{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)+\text { possible log-factor }
$$

using dependent or independent estimators $\hat{Q}_{0}^{\mathrm{MC}}$, and $\left(\hat{Y}_{\ell}^{\mathrm{MC}}\right)_{\ell=1}^{L}$.

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]
Assume approximation error $\mathscr{O}\left(2^{-\alpha \ell}\right)$, Cost/sample $\mathscr{O}\left(2^{\gamma \ell}\right)$ and

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathscr{O}\left(2^{-\beta \ell}\right) \quad \text { (strong error/variance reduction) }
$$

Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ to obtain MSE $=\mathscr{O}\left(\varepsilon^{2}\right)$ with

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathscr{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)+\text { possible log-factor }
$$

using dependent or independent estimators $\hat{Q}_{0}^{\mathrm{MC}}$, and $\left(\hat{Y}_{\ell}^{\mathrm{MC}}\right)_{\ell=1}^{L}$.

Running example (for smooth fctls. \& AMG): $\alpha \approx 1, \beta \approx 2, \gamma \approx 2$

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathscr{O}\left(\varepsilon^{-\max \left(2, \frac{\gamma}{\alpha}\right)}\right)=\mathscr{O}\left(\max \left(N_{0}, M_{L}\right)\right) \approx \mathscr{O}\left(\varepsilon^{-2}\right)
$$

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

Assume approximation error $\mathscr{O}\left(2^{-\alpha \ell}\right)$, Cost/sample $\mathscr{O}\left(2^{\gamma \ell}\right)$ and

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathscr{O}\left(2^{-\beta \ell}\right) \quad \text { (strong error/variance reduction) }
$$

Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ to obtain MSE $=\mathscr{O}\left(\varepsilon^{2}\right)$ with

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathscr{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)+\text { possible log-factor }
$$

using dependent or independent estimators $\hat{Q}_{0}^{\mathrm{MC}}$, and $\left(\hat{Y}_{\ell}^{\mathrm{MC}}\right)_{\ell=1}^{L}$.

Running example (for smooth fctls. \& AMG): $\alpha \approx 1, \beta \approx 2, \gamma \approx 2$

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathscr{O}\left(\varepsilon^{-\max \left(2, \frac{\gamma}{\alpha}\right)}\right)=\mathscr{O}\left(\max \left(N_{0}, M_{L}\right)\right) \approx \mathscr{O}\left(\varepsilon^{-2}\right)
$$

Optimality: Asymptotic cost of one deterministic solve (to tol $=\varepsilon$) !

Numerical Example (Multievel MC)

Running example with $Q=\|u\|_{L_{2}(D)}$

$h_{0}=\frac{1}{8}$; lognormal diffusion coeff. w. exponential covariance ($\sigma^{2}=1, \lambda=0.3$)

Inverse Problem: Multilevel Markov Chain Monte Carlo

Posterior distribution for PDE model problem (Bayes):

$$
\pi^{\ell}\left(x_{\ell} \mid y^{\mathrm{obs}}\right) \approx \exp \left(-\left\|y^{\mathrm{obs}}-F_{\ell}\left(x_{\ell}\right)\right\|_{\sum^{\text {obs }}}^{2}\right) \pi_{\text {prior }}\left(x_{\ell}\right)
$$

Inverse Problem: Multilevel Markov Chain Monte Carlo

Posterior distribution for PDE model problem (Bayes):

$$
\pi^{\ell}\left(x_{\ell} \mid y^{\mathrm{obs}}\right) \approx \exp \left(-\left\|y^{\mathrm{obs}}-F_{\ell}\left(x_{\ell}\right)\right\|_{\Sigma^{\mathrm{obs}}}^{2}\right) \pi_{\text {prior }}\left(x_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

Inverse Problem: Multilevel Markov Chain Monte Carlo

Posterior distribution for PDE model problem (Bayes):

$$
\pi^{\ell}\left(x_{\ell} \mid y^{\mathrm{obs}}\right) \approx \exp \left(-\left\|y^{\mathrm{obs}}-F_{\ell}\left(x_{\ell}\right)\right\|_{\Sigma^{\mathrm{obs}}}^{2}\right) \pi_{\text {prior }}\left(x_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve ($M_{0} \ll M_{L}$).
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} 0$ as \Longrightarrow much fewer samples on finer levels.

Inverse Problem: Multilevel Markov Chain Monte Carlo

Posterior distribution for PDE model problem (Bayes):

$$
\pi^{\ell}\left(x_{\ell} \mid y^{\mathrm{obs}}\right) \approx \exp \left(-\left\|y^{\mathrm{obs}}-F_{\ell}\left(x_{\ell}\right)\right\|_{\Sigma^{\mathrm{obs}}}^{2}\right) \pi_{\text {prior }}\left(x_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve ($M_{0} \ll M_{L}$).
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :

$$
\mathbb{E}_{\pi^{\llcorner }}\left[Q_{L}\right]=\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]+\sum_{\ell} \mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]
$$

Inverse Problem: Multilevel Markov Chain Monte Carlo

Posterior distribution for PDE model problem (Bayes):

$$
\pi^{\ell}\left(x_{\ell} \mid y^{\mathrm{obs}}\right) \approx \exp \left(-\left\|y^{\mathrm{obs}}-F_{\ell}\left(x_{\ell}\right)\right\|_{\Sigma^{\mathrm{obs}}}^{2}\right) \pi_{\text {prior }}\left(x_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve ($M_{0} \ll M_{L}$).
- $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :

$$
\begin{gathered}
\mathbb{E}_{\pi^{L}}\left[Q_{L}\right]=\underbrace{\mathbb{E}_{\pi^{0}}\left[Q_{0}\right]}_{\text {standard MCMC }}+\sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[Q_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[Q_{\ell-1}\right]}_{\text {multilevel MCMC (NEW) }} \\
\widehat{Q}_{h, s}^{\text {MLMetH }}:=\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} Q_{0}\left(z_{0,0}^{n}\right)+\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}}\left(Q_{\ell}\left(z_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(z_{\ell, \ell-1}^{n}\right)\right)
\end{gathered}
$$

Multilevel Markov Chain Monte Carlo - Algorithm

 [Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015 or SIREV 2019]
ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $z_{\ell, 0}^{n}, \ldots, z_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $x_{0}^{0}:=z_{\ell, 0}^{n}$. Generate samples $x_{0}^{i} \sim \pi^{0}$ (coarse posterior) via basic Metropolis-Hastings.
(2) $k>0$: Set $x_{k}^{0}:=z_{\ell, k}^{n}$. Generate samples $x_{k}^{i} \sim \pi^{k}$ as follows:
(a) Propose $x_{k}^{\prime}=x_{k-1}^{(i+1) t_{k-1}}$
(b) Accept x_{k}^{\prime} with probability

$$
\boldsymbol{\alpha}_{\ell}^{\mathrm{ML}}\left(x_{k}^{\prime} \mid x_{k}^{i}\right)=\min \left(1, \frac{\pi^{k}\left(x_{k}^{\prime}\right) \mathrm{q}_{k}^{\mathrm{ML}}\left(x_{k}^{n} \mid x_{k}^{\prime}\right)}{\pi^{k}\left(x_{k}^{n}\right) \mathrm{q}^{\mathrm{ML}}\left(x_{k}^{\prime} \mid x_{k}^{n}\right)}\right)
$$

i.e. set $x_{k}^{i+1}=x_{k}^{\prime}$ with prob. $\alpha_{\ell}^{\mathrm{ML}}\left(x_{k}^{\prime} \mid x_{k}^{i}\right)$; otherwise $x_{k}^{i+1}=x_{k}^{i}$

Multilevel Markov Chain Monte Carlo - Algorithm

 [Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015 or SIREV 2019]
ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for $Q_{\ell}-Q_{\ell-1}$)

At states $z_{\ell, 0}^{n}, \ldots, z_{\ell, \ell}^{n}$ of $\ell+1$ Markov chains on levels $0, \ldots, \ell$:
(1) $k=0$: Set $x_{0}^{0}:=z_{\ell, 0}^{n}$. Generate samples $x_{0}^{i} \sim \pi^{0}$ (coarse posterior) via basic Metropolis-Hastings.
(2) $k>0$: Set $x_{k}^{0}:=z_{\ell, k}^{n}$. Generate samples $x_{k}^{i} \sim \pi^{k}$ as follows:
(a) Propose $x_{k}^{\prime}=x_{k-1}^{(i+1) t_{k-1}}$

Subsample to reduce correlation!
(b) Accept x_{k}^{\prime} with probability

$$
\boldsymbol{\alpha}_{\ell}^{\mathrm{ML}}\left(x_{k}^{\prime} \mid x_{k}^{i}\right)=\min \left(1, \frac{\pi^{k}\left(x_{k}^{\prime}\right) \pi^{k-1}\left(x_{k}^{n}\right)}{\pi^{k}\left(x_{k}^{n}\right) \pi^{k-1}\left(x_{k}^{\prime}\right)}\right) \quad \text { JS Liu, } 2001
$$

i.e. set $x_{k}^{i+1}=x_{k}^{\prime}$ with prob. $\alpha_{\ell}^{\mathrm{ML}}\left(x_{k}^{\prime} \mid x_{k}^{i}\right)$; otherwise $x_{k}^{i+1}=x_{k}^{i}$
(c) Set $z_{\ell, k}^{n+1}:=x_{k}^{T_{k}}$ with $T_{k}:=\prod_{j=k}^{\ell-1} t_{j}$.

Comments

- Each $\left\{z_{\ell, k}^{n}\right\}_{n \geq 1}$ is a Markov chain targeting $\pi^{k}, k=0, \ldots, \ell$.
- In the limit of infinite subsampling rate, the chains are unbiased and the multilevel algorithm is consistent (no bias between levels). (In practice, with subsampling rate $\bar{\sim}$ IACT the bias is negligible.)

Main Theoretical Results from [Dodwell, Ketelsen, RS, Teckentrup, '15]

$$
\begin{aligned}
& \mathbb{E}_{\pi^{\ell}, \pi^{\ell}}\left[1-\alpha_{\ell}^{\mathrm{ML}}(\cdot \mid \cdot)\right]=\mathscr{O}\left(h_{\ell}^{1-\delta}\right) \quad \forall \delta>0 . \quad \text { (exponential covariance) } \\
& \mathbb{V}_{\pi^{\ell}, \pi^{\ell-1}}\left[Q_{\ell}\left(z_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(z_{\ell, \ell-1}^{n}\right)\right]=\mathscr{O}\left(h_{\ell}^{1-\delta}\right) \quad \forall \delta>0
\end{aligned}
$$

- Algorithm is a type of surrogate transition method [Liu 2001] related also to delayed acceptance [Christen, Fox, '05]
- But crucially, it also exploits the variance reduction idea of MLMC and the paper provides actual rates for the diffusion problem!

More Sophisticated Proposals - Multilevel DILI

[Cui, Detommaso, RS, arXiv:1910.12431]

- Original work: pCN random walk proposal [Cotter, Dashti, Stuart '12] (no grad./Hessian info)

More Sophisticated Proposals - Multilevel DILI [Cui, Detommaso, RS, arXiv:1910.12431]

- Original work: pCN random walk proposal [Cotter, Dashti, Stuart '12] (no grad./Hessian info)
- Better: DILI [Cui, Law, Marzouk, '16]: (dimension-independent likelihood-informed)
Samples from preconditioned Langevin eqn. using low-rank Hessian approximation (LIS) at a number of points (incl. MAP point)

More Sophisticated Proposals - Multilevel DILI [Cui, Detommaso, RS, arXiv:1910.12431]

- Original work: pCN random walk proposal [Cotter, Dashti, Stuart '12] (no grad./Hessian info)
- Better: DILI [Cui, Law, Marzouk, '16]: (dimension-independent likelihood-informed)
Samples from preconditioned Langevin eqn. using low-rank Hessian approximation (LIS) at a number of points (incl. MAP point)

More Sophisticated Proposals - Multilevel DILI

 [Cui, Detommaso, RS, arXiv:1910.12431]- Original work: pCN random walk proposal [Cotter, Dashti, Stuart '12] (no grad./Hessian info)
- Better: DILI [Cui, Law, Marzouk, '16]: (dimension-independent likelihood-informed)
Samples from preconditioned Langevin eqn. using low-rank Hessian approximation (LIS) at a number of points (incl. MAP point)
- [Cui et al, '19]: Hierarchical construction of LIS (which is significantly cheaper!) and combination of DILI with MLMCMC.

More Sophisticated Proposals - Multilevel DILI [Cui, Detommaso, RS, arXiv:1910.12431]

- Original work: pCN random walk proposal [Cotter, Dashti, Stuart '12] (no grad./Hessian info)
- Better: DILI [Cui, Law, Marzouk, '16]: (dimension-independent likelihood-informed)
Samples from preconditioned Langevin eqn. using low-rank Hessian approximation (LIS) at a number of points (incl. MAP point)
- [Cui et al, '19]: Hierarchical construction of LIS (which is significantly cheaper!) and combination of DILI with MLMCMC.
- Numerical experiment: much higher dimensional and more complicated than above, using lognormal prior.

Numerical Comparison: IACTs \& CPU Times

Refined parameters

$$
Q_{\ell}\left(z_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(z_{\ell, \ell-1}^{n}\right)
$$

Level ℓ	0	1	2	3
iact(pCN)	4300	45	48	24
iact(DILI)	34	11	3.6	2.0

Level ℓ	0	1	2	3
iact(pCN)	4100	4.9	2.8	1.9
iact(DILI)	9.0	4.6	2.4	1.8

Numerical Comparison: IACTs \& CPU Times

Refined parameters

$$
Q_{\ell}\left(z_{\ell, \ell}^{n}\right)-Q_{\ell-1}\left(z_{\ell, \ell-1}^{n}\right)
$$

Level ℓ	0	1	2	3
iact(pCN)	4300	45	48	24
iact(DILI)	34	11	3.6	2.0

Level ℓ	0	1	2	3
iact(pCN)	4100	4.9	2.8	1.9
$\operatorname{iact}(\mathrm{DILI})$	9.0	4.6	2.4	1.8

Conclusions

- Large-scale PDE-constrained Bayesian inference with sparse data
- Idea 1: Characterise complex/intractable distributions by constructing deterministic couplings
- Variational Inference: Optimisation of Kullback-Leibler divergence (Many types: sparse, decomposable, neural nets, polynomial, kernel-based)

Conclusions

- Large-scale PDE-constrained Bayesian inference with sparse data
- Idea 1: Characterise complex/intractable distributions by constructing deterministic couplings
- Variational Inference: Optimisation of Kullback-Leibler divergence (Many types: sparse, decomposable, neural nets, polynomial, kernel-based)
- Alternative: Low-rank tensor factorisation and conditional distribution sampling (Rosenblatt transform) [Stats \& Comput, 2019]
- Scales with dimension; comparable comput. efficiency to NNs
- Unbiased estimates via Metropolisation or importance weighting

Conclusions

- Large-scale PDE-constrained Bayesian inference with sparse data
- Idea 1: Characterise complex/intractable distributions by constructing deterministic couplings
- Variational Inference: Optimisation of Kullback-Leibler divergence (Many types: sparse, decomposable, neural nets, polynomial, kernel-based)
- Alternative: Low-rank tensor factorisation and conditional distribution sampling (Rosenblatt transform) [Stats \& Comput, 2019]
- Scales with dimension; comparable comput. efficiency to NNs
- Unbiased estimates via Metropolisation or importance weighting
- Idea 2: Use model hierarchies - Multilevel MCMC [SINUM, 2019]
- Variance reduction and much better complexities (proven!)
- Better IACT on fine levels through surrogate transition method
- Further acceleration (especially on coarsest level) by using DILI

References

(1) Dolgov, Anaya-Izquierdo, Fox, RS, Approximation and sampling of multivariate probability distributions in the tensor train decomposition, Statistics \& Comput. 30, 2020 [arXiv:1810.01212]
(2) Dodwell, Ketelsen, RS, Teckentrup, A hierarchical multilevel Markov chain MC algorithm [...], SIAM/ASA J Uncertain Q 3, 2015 [arXiv:1303.7343]
(3) Cui, Detommaso, RS, Multilevel dimension-independent likelihood-informed MCMC for large-scale inverse problems, submitted, 2019 [arXiv:1910.12431]
(4) Moselhy, Marzouk, Bayesian inference with optimal maps, J Comput Phys 231, 2012 [arXiv:1109.1516]
(5) Rezende, Mohamed, Variational inference with normalizing flows, ICML'15 Proc. 32nd Inter. Conf. Machine Learning, Vol. 37, 2015 [arXiv:1505.05770]
(6) Marzouk, Moselhy, Parno, Spantini, Sampling via measure transport: An introduction, Handbook of UQ (Ghanem et al, Eds), 2016 [arXiv:1602.05023]
(7) Detommaso, Cui, Spantini, Marzouk, RS, A Stein variational Newton method, NIPS 2018, Vol. 31, 2018 [arXiv:1806.03085]
(8) Kruse, Detommaso, RS, Köthe, HINT: Hierarchical invertible neural transport for density estimation \& Bayesian inference, 2019 [arXiv:1905.10687]

