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Inverse Problems

Data Parameter

y = F ( x ) + e

forward model (PDE) observation/model errors

y ∈ RNy

x ∈ X

F : X → RNy

Data y are limited in number, noisy, and indirect.

Parameter x often a function (discretisation needed).

Continuous, bounded, and sufficiently smooth.
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Bayesian interpretation

The (physical) model gives π(y |x), the conditional probability of observing
y given x . However, to predict, control, optimise or quantify uncertainty,
the interest is often really in π(x |y), the conditional probability of possible
causes x given the observed data y – the inverse problem:

πpos (x) := π (x |y) ∝ π (y |x)πpr (x)︸ ︷︷ ︸
Bayes’ rule

Extract information from πpos (means, covariances, event probabilities,
predictions) by evaluating posterior expectations:

Eπpos [h(x)] =

∫
h(x)πpos(x)dx
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Bayes’ Rule and Classical Inversion

Classically [Hadamard, 1923]: Inverse map “F−1” (y → x) is typically
ill-posed, i.e. lack of (a) existence, (b) uniqueness or (c) boundedness

classical least squares solution x̂ is maximum likelihood estimate

prior distribution πpr “acts” as regulariser – well-posedness !

regularised least squares sol. is maximum a posteriori (MAP) estimate

However, in the Bayesian setting, the full posterior πpos contains more
information than the MAP estimator alone, e.g. the posterior covariance
matrix reveals components of x that are (relatively) more or less certain.

Challenges: high dimension, expensive likelihood & the (inaccessible)
normalising constant

π(y) :=
∫
π (y |x)πpr (x) dx

Require sample-based approach to break “Curse of Dimensionality”.
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Traditional Work Horse: Markov Chain Monte Carlo

ALGORITHM 1 (Metropolis-Hastings Markov Chain Monte Carlo)

Choose initial state x0 ∈ X .

At state xn generate proposal x ′ ∈ X from distribution q(x ′ | xn)
e.g. via a random walk: x ′ ∼ N(xn, ε2I)

Accept x ′ as a sample with probability

α(x ′|xn) = min

(
1,

π(x ′|y) q(xn | y)

π(xn|x ′) q(x ′ | xn)

)

i.e. xn+1 = x ′ with probability α(x ′|xn); otherwise xn+1 = xn.

The samples h(xn) of some output function (“statistic”) h(·) can be used
for inference as usual – even though not i.i.d.:

Eπ(x |y) [h(x)] ≈ 1

N

N∑

i=1

h(xn) := ĥMetH
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Slow Convergence of Random Walk Metropolis-Hastings

But sampling with Metropolis-Hastings can be very inefficient ...
(due to burn-in, small step size and large number of rejections)
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... on top of the slow Monte Carlo convergence rate of O(N−1/2) !
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Variational Bayes (as opposed to Metropolis-Hastings MCMC)

Aim to characterise the posterior distribution (density πpos) analytically
(at least approximately) for more efficient inference.

This is a challenging task since:

x ∈ Rd is typically high-dimensional (e.g., discretised function)

πpos is in general non-Gaussian
(even if πpr and observational noise are Gaussian)

evaluations of likelihood may be expensive (e.g., solution of a PDE)

Key Tools

– a playground for a numerical analyst!

Transport Maps, Optimisation, Principle Component Analysis, Model
Order Reduction, Hierarchies, Sparsity, Low Rank Approximation
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Deterministic Couplings of Probability Measures

Core idea [Moselhy, Marzouk, 2012]

Choose a reference distribution η (e.g., standard Gaussian)

Seek transport map T : Rd → Rd such that T]η = π (push-forward)

(invertible)

⇡(✓) p(r)

⇡̃(r)

T (✓)

T̃ (✓)

Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure ⇡ to the standard Gaussian
reference p while the approximate map only captures some of the structure in ⇡,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(✓, T (✓)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
✓ ⇠ N(0, I) and r ⇠ N(0,⌃) for some covariance matrix ⌃. In this Gaussian example,

the transport map will be linear: r
i.d.
= ⌃1/2✓, where ⌃1/2 is any one of the many

square roots of ⌃. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(✓, T (✓)) = k✓ � T (✓)k2, (2.3)

the optimal square root, ⌃1/2, will be defined by the eigenvalue decomposition of ⌃,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(✓, T (✓)) = lim
t!0

DX

k=1

tk�1|✓k � Tk(✓)|, (2.4)

the optimal square root, ⌃1/2, will be defined by the Cholesky decomposition of ⌃.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting

31

⇡(✓) p(r)

⇡̃(r)

T (✓)

T̃ (✓)

Figure 2-1: Illustration of exact and inexact transformations coming from T and T̃
respectively. The exact map pushes the target measure ⇡ to the standard Gaussian
reference p while the approximate map only captures some of the structure in ⇡,
producing an approximation p̃ to the reference Gaussian.

µr does not contain any point masses and the cost function c(✓, T (✓)) is quadratic.
Details of the existence and uniqueness proofs can also be found in [102].

Being a form of regularization, the cost function in (2.2) defines the form and
structure of the optimal transport map. For illustration, consider the case when
✓ ⇠ N(0, I) and r ⇠ N(0,⌃) for some covariance matrix ⌃. In this Gaussian example,

the transport map will be linear: r
i.d.
= ⌃1/2✓, where ⌃1/2 is any one of the many

square roots of ⌃. Two possible matrix square roots are the Cholesky factor, and the
eigenvalue square root. Interestingly, when the cost is given by

cEig(✓, T (✓)) = k✓ � T (✓)k2, (2.3)

the optimal square root, ⌃1/2, will be defined by the eigenvalue decomposition of ⌃,
but when the cost is given by the limit of a a weighted quadratic defined by

cRos(✓, T (✓)) = lim
t!0

DX

k=1

tk�1|✓k � Tk(✓)|, (2.4)

the optimal square root, ⌃1/2, will be defined by the Cholesky decomposition of ⌃.
In the more general nonlinear and non-Gaussian setting, this latter cost is shown by
[22] and [15] to yield the well-known Rosenblatt transformation from [91].

The Cholesky factor is a special case of the Rosenblatt transformation, which it-
self is just a multivariate generalization of using cumulative distribution functions to
transform between univariate random variables (i.e., the “CDF trick”). Importantly,
the lower triangular structure present in the Cholesky factor, which makes inverting

31

 T

 η  π

In principle, enables exact (independent, unweighted) sampling!

Approximately satisfying conditions still useful: Preconditioning!
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31

 T

 η  π

In principle, enables exact (independent, unweighted) sampling!

Approximately satisfying conditions still useful: Preconditioning!
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Variational Inference

Goal: Sampling from target density π(x)

Given a reference density η, find an invertible map T̂ such that

T̂ := argmin
T

DKL(T] η ‖π) = argmin
T

DKL(η ‖T−1
] π)

where

DKL(p ‖ q):=

∫
log

(
p(x)

q(x)

)
p(x) dx . . . Kullback-Leibler divergence

T] p(x):= p
(
T−1(x)

) ∣∣det
(
∇xT

−1(x)
)∣∣ . . . push-forward of p

Advantage of using DKL: normalising constant for π is not needed

Minimise over some suitable class T of maps T
(where ideally Jacobian determinant det

(
∇xT

−1(x)
)

is easy to evaluate)

To improve: enrich class T or use samples of T−1
] π as

proposals for MCMC or in importance sampling (see below)
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Many Choices (“Architectures”) for T possible

Examples: (list not comprehensive!!)

1 Optimal Transport or Knothe-Rosenblatt Rearrangement
[Moselhy, Marzouk, 2012], [Marzouk, Moselhy, Parno, Spantini, 2016]

2 Normalizing or Autoregressive Flows [Rezende, Mohamed, 2015]

(and related methods in the ML literature)

3 Kernel-based variational inference: Stein Variational Methods
[Liu, Wang, 2016], [Detommaso, Cui, Spantini, Marzouk, RS, 2018],

[Chen, Wu, Chen, O’Leary-Roseberry, Ghattas, 2019] not today!

4 Layers of low-rank maps [Bigoni, Zahm, Spantini, Marzouk, arXiv 2019]

5 Layers of hierarchical invertible neural networks (HINT) not today!

[Detommaso, Kruse, Ardizzone, Rother, Köthe, RS, arXiv:1905.10687]

6 Low-rank tensor approximation of Knothe-Rosenblatt rearrangement
[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]
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Approximation and Sampling of Multivariate Probability
Distributions in the Tensor Train Decomposition

[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]
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Variational Inference with Triangular Maps

In general, in Variational Inference aim to find

argmin
T

DKL(T] η ||π)

Note:

DKL(T] η ||π) = −Eu∼η
[

log π(T (u)) + log | det∇T (u)|
]

+ const

Particularly useful family T are Knothe-Rosenblatt triangular
rearrangements (see [Marzouk, Moshely, Parno, Spantini, 2016]):

T (x) =




T1(x1)
T2(x1, x2)
...
Td(x1, x2, . . . , xd)


 (= autoregressive flow in ML)

Then: log | det∇T (u)| =
∑

k log ∂xkT
k
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Knothe-Rosenblatt via Conditional Distribution Sampling

In fact, ∃! triangular map satisfying T] η = π (for abs. cont. η, π on Rd)

Conditional Distribution Sampling [Rosenblatt ’52] (explicitly available!)

Any density factorises into product of conditional densities:

π(x1, . . . , xd) = π1(x1)π2(x2|x1) · · ·πd(xd |x1, . . . , xd−1)

Can sample (up to normalisation with known scaling factor)

xk ∼ πk(xk |x1, . . . , xk−1) ∼
∫
π(x1, . . . , xd)dxk+1 · · · dxd

k-th step: Given x i1, . . . , x
i
k−1 sample x ik via 1D CDF-inversion from

πk(xk |x i1, . . . , x ik−1) ∼
∫
π(x i1, . . . , x

i
k−1, xk , xk+1, . . . , xd)dxk+1 · · · dxd

Problem: (d − k)-dimensional integration at k-th step!

Remedy: Find approximation π̃ ≈ π where integration is cheap!
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Low-rank Tensor Approximation of Distributions

Low-rank tensor decomposition ⇔ separation of variables:

n

O(nd)

 

O(dn)

Tensor grid with n points per direction (or n polynomial basis fcts.)

Approximate: π(x1, . . . , xd)︸ ︷︷ ︸
tensor

≈
∑
|α|≤r

π1
α(x1)π2

α(x2) · · ·πdα(xd)
︸ ︷︷ ︸

tensor product decomposition

Many low-rank tensor formats exist [Kolda, Bader ’09], [Hackbusch ’12]
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Conditional Distribution Sampler (with factorised distribution)

For the low-rank tensor approximation

π(x) ≈ π̃(x) =
∑

|α|≤r
π1
α(x1) · π2

α(x2) · · ·πdα(xd)

the k-th step of the CD sampler, given x i1, . . . , x
i
k−1, simplifies to

π̃k(xk |x i1, . . . , x ik−1) ∼
∑

|α|≤r
π1
α(x i1) · · ·πk−1

α (x ik−1) . . .

. . . πkα(xk) . . .

. . .

∫
πk+1
α (xk+1)dxk+1 · · ·

∫
πdα(xd)dxd

︸ ︷︷ ︸
Repeated 1D integrals! linear in d

To sample (in each step): Simple 1D CDF-inversions linear in d

R. Scheichl (Heidelberg) PDE-Constrained Bayesian Inference ICERM 23/03/20 14 / 38



Conditional Distribution Sampler (with factorised distribution)

For the low-rank tensor approximation

π(x) ≈ π̃(x) =
∑

|α|≤r
π1
α(x1) · π2

α(x2) · · ·πdα(xd)

the k-th step of the CD sampler, given x i1, . . . , x
i
k−1, simplifies to

π̃k(xk |x i1, . . . , x ik−1) ∼
∑

|α|≤r
π1
α(x i1) · · ·πk−1

α (x ik−1) . . .

. . . πkα(xk) . . .

. . .

∫
πk+1
α (xk+1)dxk+1 · · ·

∫
πdα(xd)dxd

︸ ︷︷ ︸
Repeated 1D integrals! linear in d

To sample (in each step): Simple 1D CDF-inversions linear in d

R. Scheichl (Heidelberg) PDE-Constrained Bayesian Inference ICERM 23/03/20 14 / 38



Low-rank Decomposition (Two Variables)

Collect discretised values of π(θ1, θ2) on n × n grid into a matrix:

P(i , j) =
r∑

α=1

Vα(i)Wα(j) + O(ε)

≈

Rank r � n (exploiting structure, smoothness, . . . )

mem(V ) + mem(W ) = 2nr � n2 = mem(P)

SVD provides optimal ε for fixed r (s.t. minV ,W ‖P − VW ∗‖2
F )

But requires all n2 entries of P !

nd in d dimensions!
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Cross Algorithm (construct low-rank factorisation from few entries)

Interpolation arguments show: for some suitable index sets
I ,J ⊂ {1, . . . , n} with |I | = |J | = r , the cross decomposition

≈

−1

also P(:,J )P−1(I ,J )P(I , :) ≈ P

Maxvol principle gives ‘best’ indices I ,J [Goreinov, Tyrtyshnikov ’01]

|detP(I ,J )| = max
Î ,Ĵ

∣∣∣detP(Î , Ĵ )
∣∣∣ ⇒ ‖P−P̃‖C ≤ (r+1) min

rankP̂=r
‖P−P̂‖2

(NP-hard)

But how can we find good sets I ,J in practice?

And how can we generalise this to d > 2?
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Î ,Ĵ
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∣∣∣ ⇒ ‖P−P̃‖C ≤ (r+1) min

rankP̂=r
‖P−P̂‖2

(NP-hard)

But how can we find good sets I ,J in practice?

And how can we generalise this to d > 2?

R. Scheichl (Heidelberg) PDE-Constrained Bayesian Inference ICERM 23/03/20 16 / 38



Alternating Iteration (for cross approximation)

j1 j2 j3

i3

i2

i1

j1 j2 j3
Practically realizable
strategy (with O(2nr)

samples & O(nr2) flops).

For numerical stability
use rank-revealing QR
in practice.

To adapt rank expand
V →

[
V Z

]
) (with

residual Z )

Several similar
algorithms exist: e.g.
ACA [Bebendorf ’00] or

EIM [Barrault et al ’04]
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Tensor Train (TT) Decomposition (Many Variables)

Many variables: Matrix Product States/Tensor Train

π(i1 . . . id) =

rk∑

αk=1
0<k<d

π1
α1

(i1) · π2
α1,α2

(i2) · π3
α2,α3

(i3) · · ·πdαd−1
(id)

n

r1 . . .
rk

rk−1

n

[Wilson ’75] (comput. physics), [White ’93], [Verstraete ’04]; [Oseledets ’09]

TT blocks πk are three-dimensional rk−1 × n × rk tensors

with TT ranks r1, . . . , rd−1 ≤ r

Storage: O(dnr2) linear in d
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TT Cross – An Efficient Computation of a TT Decomposition

Given random initial sets J0, . . . ,Jd iterate: [Oseledets, Tyrtyshnikov ’10]

1 Update kth TT block: πk(ik) = π(Ik−1, ik ,Jk)

2 Update kth index set: Ik = pivotsrow(πk)

(using maxvol principle on different matrizations of tensor in each step)

(j1, k1) (j2, k2) (j3, k3)

i3

i2

i1

3 Set k → k + 1 and move to the next block.

4 When k = d , switch direction and update index set Jk−1.

Cost: O(dnr2) samples & O(dnr3) flops per iteration linear in d
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Tensor Train (TT) Transport Maps (Summary & Comments)

[Dolgov, Anaya-Izquierdo, Fox, RS, 2019]

Generic – not problem specific (‘black box’)

Cross approximation: ‘sequential’ design along 1D lines

Separable product form: π̃(x1, . . . , xd) =
∑
|α|≤r π

1
α(x1) . . . πd

α(xd)

Cheap construction/storage & low # model evals linear in d

Cheap integration w.r.t. x linear in d

Cheap samples via conditional distribution method linear in d

Tuneable approximation error ε (by adapting ranks r):

=⇒ cost & storage (poly)logarithmic in ε next slide

Many known ways to use these samples for fast inference!
(as proposals for MCMC, as control variates, importance weighting, . . . )
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Theoretical Result [Rohrbach, Dolgov, Grasedyck, RS, 2020]

For Gaussian distributions π(x) we have the following result: Let

π : Rd → R, x 7→ exp
(
−1

2x
TΣx

)

and define

Σ :=

[
Σ

(k)
11 ΓT

k

Γk Σ
(k)
22

]
where Γk ∈ R(d−k)×k .

Theorem. Let Σ be SPD with λmin > 0. Suppose ρ := maxk rank(Γk)

and σ := maxk,i σ
(k)
i , where σ

(k)
i are the singular values of Γk .

Then, for all ε > 0, there exists a TT-approximation π̃ε s.t.

‖π − π̃ε‖L2(Rd ) ≤ ε‖π‖L2(Rd )

and the TT-ranks of π̃ε are bounded by

r ≤
((

1 + 7 σ
λmin

)
log
(
7ρ d

ε

))ρ
. (polylogarithmic growth)
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How to use the TT-CD sampler to estimate EπQ?

Problem: We are sampling from approximate π̃ = π + O(ε).

Option 0: Classical variational inference

Explicit integration (linear in d): get biased estimator Eπ̃Q ≈ EπQ
Non-smooth Q: use Monte Carlo sampling, or better, QMC ‘seeds’

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5
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1.5

→

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5
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-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

2D projection of 11D map (problem specification below!)
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Sampling from exact π: Unbiased estimates of EπQ

using TT approximation as preconditioner, importance weight or control variate

Option 1: Use {x iπ̃} as (i.i.d.) proposals in Metropolis-Hastings

Accept proposal x iπ̃ with probability α = min

(
1,
π(x iπ̃)π̃(x i−1

π )

π(x i−1
π )π̃(x iπ̃)

)

Can prove that rejection rate ∼ ε and IACT τ ∼ 1 + ε

Option 2: Use π̃ importance weighting with QMC quadrature

EπQ ≈
1

Z

1

N

N∑

i=1

Q(x iπ̃)
π(x iπ̃)

π̃(x iπ̃)
with Z =

1

N

N∑

i=1

π(x iπ̃)

π̃(x iπ̃)

We can use an unbiased (randomised) QMC rule for both integrals.

Option 3: Use estimate w.r.t. π̃ as control variate (multilevel MCMC)
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Numerical Example (Inverse Stationary Diffusion Problem)

Model Problem (representative for

subsurface flow or structural mechanics)

−∇κ(ξ, x)∇u(ξ, x) = 0 ξ ∈ (0, 1)2

u|ξ1=0 = 1, u|ξ1=1 = 0,

∂u
∂n

∣∣∣
ξ2=0

= 0, ∂u
∂n

∣∣∣
ξ2=1

= 0.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Karhunen-Loève expansion of log κ(ξ, x) =
d∑

k=1

φk(ξ)xk with prior

d = 11, xk ∼ U[−1, 1], ‖φk‖∞ = O(k−
3
2 ) [Eigel, Pfeffer, Schneider ’16]

Discretisation with bilinear FEs on uniform mesh with h = 1/64.

Data: average pressure in 9 locations (synthetic, i.e. for some ξ∗)

QoI Q = h(u(·, x)): probability that flux exceeds 1.5 (not smooth!)
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Comparison against DRAM (for inverse diffusion problem)

noise level σ2
e = 0.01

noise level σ2
e = 0.001
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TT-MH TT conditional distribution samples (iid) as proposals for MCMC

TT-qIW TT surrogate for importance sampling with QMC

DRAM Delayed Rejection Adaptive Metropolis [Haario et al, 2006]
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Samples – Comparison TT-CD vs. DRAM
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Multilevel Markov Chain Monte Carlo

[Dodwell, Ketelsen, RS, Teckentrup, 2015 & 2019],

[Cui, Detommaso, RS, 2019]
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Exploiting Model Hierarchy (same inverse diffusion problem)

L

0

V`

Here h` = h0 × 2−` and M` ≈ M0 × 22`

X`
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Monte Carlo (assuming first π can be sampled – forward problem)

Standard Monte Carlo estimator for E[Q]: (where Q = h(u(·, x)) ∈ R)

Q̂MC
L :=

1

N

N∑

i=1

Q
(i)
L , Q

(i)
L i.i.d. samples with Model(L)

Convergence of plain vanilla MC (mean square error):

E
[(
Q̂MC

L − E[Q]
)2]

︸ ︷︷ ︸
=: MSE

=
V[QL]

N︸ ︷︷ ︸
sampling error

+
(
E[QL − Q]

)2

︸ ︷︷ ︸
model error (“bias”)

Assuming |E[Q` − Q]| = O(2−α`) and E[Cost`] = O(2γ`),

to get MSE = O(ε2), we need L ∼ log2(ε−1)α−1 & N ∼ ε−2

Monte Carlo Complexity Theorem

Cost(Q̂MC
L ) = O(NML) = O

(
ε−2− γ/α) to obtain MSE = O(ε2).
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Assuming |E[Q` − Q]| = O(2−α`) and E[Cost`] = O(2γ`),

to get MSE = O(ε2), we need L ∼ log2(ε−1)α−1 & N ∼ ε−2

Monte Carlo Complexity Thm. (2D model problem w. AMG: α = 1, γ = 2)

Cost(Q̂MC
L ) = O(NML) = O

(
ε−2− γ/α) to obtain MSE = O(ε2).
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Multilevel Monte Carlo [Heinrich, ’98], [Giles, ’07]

Basic Idea: Note that trivially

(due to linearity of E)

E[

QL

]

=

E[

Q0

]

+
L∑

`=1

E[

Q` − Q`−1

] Control Variates!!

Define the following multilevel MC estimator for E[Q]:

Q̂MLMC
L := Q̂MC

0 +
L∑

`=1

Ŷ MC
` where Y` := Q` − Q`−1

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: V[QL − QL−1]→ 0 as L→∞ ⇒ NL = O(1) (best case)

...
Level `: N` optimised to “balance” with cost on levels 0 and L

...

Level 0: N0 ∼ N but Cost0 = O(M0) = O(1)
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Complexity Theorem [Giles, ’07], [Cliffe, Giles, RS, Teckentrup, ’11]

Assume approximation error O(2−α`), Cost/sample O(2γ`) and

V[Q` − Q`−1] = O(2−β`) (strong error/variance reduction)

Then there exist L, {N`}L`=0 to obtain MSE = O(ε2) with

Cost(Q̂MLMC
L ) = O

(
ε−2−max

(
0, γ−β

α

))
+ possible log-factor

using dependent or independent estimators Q̂MC
0 , and

(
Ŷ MC
`

)L
`=1

.

Running example (for smooth fctls. & AMG): α ≈ 1, β ≈ 2, γ ≈ 2

Cost(Q̂MLMC
L ) = O

(
ε−max(2, γ

α)
)

= O (max(N0,ML)) ≈ O(ε−2)

Optimality: Asymptotic cost of one deterministic solve (to tol= ε) !
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Numerical Example (Multilevel MC)

Running example with Q = ‖u‖L2(D)

h0 = 1
8 ; lognormal diffusion coeff. w. exponential covariance (σ2 = 1, λ = 0.3)
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Inverse Problem: Multilevel Markov Chain Monte Carlo

Posterior distribution for PDE model problem (Bayes):

π`(x`|yobs) h exp(−‖yobs − F`(x`)‖2
Σobs)πprior(x`)

What were the key ingredients of “standard” multilevel Monte Carlo?

Telescoping sum: E [QL] = E [Q0] +
∑L

`=1 E [Q` − Q`−1]

Models on coarser levels much cheaper to solve (M0 � ML).

V[Q` − Q`−1]
`→∞−→ 0 as =⇒ much fewer samples on finer levels.

But Important! In MCMC the target distribution π` depends on `:

EπL [QL] = Eπ0 [Q0] +
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]EπL [QL] = Eπ0 [Q0]︸ ︷︷ ︸

standard MCMC

+
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]︸ ︷︷ ︸

multilevel MCMC (NEW)

Q̂MLMetH
h,s :=

1

N0

N0∑

n=1

Q0(zn0,0) +
L∑

`=1

1

N`

N∑̀

n=1

(
Q`(z

n
`,`)− Q`−1(zn`,`−1)

)
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Multilevel Markov Chain Monte Carlo – Algorithm
[Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015 or SIREV 2019]

ALGORITHM 2 (Multilevel Metropolis Hastings MCMC for Q` − Q`−1)

At states zn`,0, . . . , z
n
`,` of `+ 1 Markov chains on levels 0, . . . , `:

1 k = 0: Set x0
0 := zn`,0. Generate samples x i0 ∼ π0 (coarse posterior) via

basic Metropolis-Hastings.

2 k > 0: Set x0
k := zn`,k . Generate samples x ik ∼ πk as follows:

(a) Propose x ′k = x
(i+1)tk−1

k−1 Subsample to reduce correlation!

(b) Accept x ′k with probability

αML
` (x ′k |x ik) = min

(
1,
πk(x ′k) qML

k (xnk |x ′k)

πk(xnk ) qML(x ′k | xnk )

)

JS Liu, 2001

i.e. set x i+1
k = x ′k with prob. αML

` (x ′k |x ik); otherwise x i+1
k = x ik

(c) Set zn+1
`,k := xTk

k with Tk :=
∏`−1

j=k tj .
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Comments

Each {zn`,k}n≥1 is a Markov chain targeting πk , k = 0, . . . , `.

In the limit of infinite subsampling rate, the chains are unbiased and
the multilevel algorithm is consistent (no bias between levels).

(In practice, with subsampling rate h IACT the bias is negligible.)

Main Theoretical Results from [Dodwell, Ketelsen, RS, Teckentrup, ’15]

Eπ`,π`
[
1−αML

` (·|·)
]

= O(h1−δ
` ) ∀δ > 0. (exponential covariance)

Vπ`,π`−1

[
Q`(z

n
`,`)− Q`−1(zn`,`−1)

]
= O(h1−δ

` ) ∀δ > 0

Algorithm is a type of surrogate transition method [Liu 2001]

related also to delayed acceptance [Christen, Fox, ’05]

But crucially, it also exploits the variance reduction idea of MLMC
and the paper provides actual rates for the diffusion problem!
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More Sophisticated Proposals – Multilevel DILI
[Cui, Detommaso, RS, arXiv:1910.12431]

Original work: pCN random walk proposal
[Cotter, Dashti, Stuart ’12] (no grad./Hessian info)

Better: DILI [Cui, Law, Marzouk, ’16]:
(dimension-independent likelihood-informed)

Samples from preconditioned Langevin eqn.
using low-rank Hessian approximation (LIS)
at a number of points (incl. MAP point)

[Cui et al, ’19]: Hierarchical construction
of LIS (which is significantly cheaper!) and
combination of DILI with MLMCMC.

Numerical experiment: much higher
dimensional and more complicated
than above, using lognormal prior.
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Numerical Comparison: IACTs & CPU Times

Refined parameters

Level ` 0 1 2 3

iact(pCN) 4300 45 48 24
iact(DILI) 34 11 3.6 2.0

Q`(z
n
`,`)− Q`−1(zn`,`−1)

Level ` 0 1 2 3

iact(pCN) 4100 4.9 2.8 1.9
iact(DILI) 9.0 4.6 2.4 1.8

2.8  10
-3

5.7  10
-3

1.27  10
-2

10
3

10
4

10
5

10
6

10
7

∼ 1 CPU Month

∼ 9 CPU Days

∼ 2 CPU Days

←− 1 CPU Day

CPU time (in sec)
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Conclusions

Large-scale PDE-constrained Bayesian inference with sparse data

Idea 1: Characterise complex/intractable distributions by
constructing deterministic couplings

Variational Inference: Optimisation of Kullback-Leibler divergence

(Many types: sparse, decomposable, neural nets, polynomial, kernel-based)

Alternative: Low-rank tensor factorisation and conditional
distribution sampling (Rosenblatt transform) [Stats & Comput, 2019]

Scales with dimension; comparable comput. efficiency to NNs
Unbiased estimates via Metropolisation or importance weighting

Idea 2: Use model hierarchies – Multilevel MCMC [SINUM, 2019]

Variance reduction and much better complexities (proven!)
Better IACT on fine levels through surrogate transition method
Further acceleration (especially on coarsest level) by using DILI
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